Rotational quenching of H2O by He: mixed quantum/classical theory and comparison with quantum results.

نویسندگان

  • Mikhail Ivanov
  • Marie-Lise Dubernet
  • Dmitri Babikov
چکیده

The mixed quantum/classical theory (MQCT) formulated in the space-fixed reference frame is used to compute quenching cross sections of several rotationally excited states of water molecule by impact of He atom in a broad range of collision energies, and is tested against the full-quantum calculations on the same potential energy surface. In current implementation of MQCT method, there are two major sources of errors: one affects results at energies below 10 cm(-1), while the other shows up at energies above 500 cm(-1). Namely, when the collision energy E is below the state-to-state transition energy ΔE the MQCT method becomes less accurate due to its intrinsic classical approximation, although employment of the average-velocity principle (scaling of collision energy in order to satisfy microscopic reversibility) helps dramatically. At higher energies, MQCT is expected to be accurate but in current implementation, in order to make calculations computationally affordable, we had to cut off the basis set size. This can be avoided by using a more efficient body-fixed formulation of MQCT. Overall, the errors of MQCT method are within 20% of the full-quantum results almost everywhere through four-orders-of-magnitude range of collision energies, except near resonances, where the errors are somewhat larger.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ro-vibrational quenching of CO (v = 1) by He impact in a broad range of temperatures: A benchmark study using mixed quantum/classical inelastic scattering theory.

The mixed quantum/classical approach is applied to the problem of ro-vibrational energy transfer in the inelastic collisions of CO(v = 1) with He atom, in order to predict the quenching rate coefficient in a broad range of temperatures 5 < T < 2500 K. Scattering calculations are done in two different ways: direct calculations of quenching cross sections and, alternatively, calculations of the e...

متن کامل

High-Level Quantum Chemical Calculations of Ozone-Water Complexes

The structural and energetic characteristics of O3–H2O complexes have been investigated by means of B3LYP, MP2, MP4(SDTQ), CCSD(T) and QCISD(T) methods in conjunction with the AUG-cc-pVDZ and AUG-cc-pVTZ basis sets. Six conformers were found for the O3–H2O complex. Two different intermolecular interactions were expected to participate in the formation of complexes, namely conventional O∙∙∙H hyd...

متن کامل

Application of quantum technology in radars

In this paper, the use of quantum technology in the radar system and the advantages of these radars as compared to classical radars have been analyzed. In the beginning, briefly, we present the basic structure of the theory of quantum electrodynamics, and then the role of photon in this theory and photon interactions is presented.  In the next step, the most general form of the quantum radar cr...

متن کامل

Mixed quantum/classical calculations of total and differential elastic and rotationally inelastic scattering cross sections for light and heavy reduced masses in a broad range of collision energies.

The mixed quantum/classical theory (MQCT) for rotationally inelastic scattering developed recently [A. Semenov and D. Babikov, J. Chem. Phys. 139, 174108 (2013)] is benchmarked against the full quantum calculations for two molecular systems: He + H2 and Na + N2. This allows testing new method in the cases of light and reasonably heavy reduced masses, for small and large rotational quanta, in a ...

متن کامل

اثر برهم‌کنش‌های چهار اسپینی برروی سیمای فاز مدل هایزنبرگ J1-J2 پادفرومغناطیس اسپین 3/2 شبکه لانه زنبوری

In this study, the effect of four-spin exchanges between the nearest and next nearest neighbor spins of honeycomb lattice on the phase diagram of S=3/2 antiferomagnetic Heisenberg model is considered with two-spin exchanges between the nearest and next nearest neighbor spins. Firstly, the method is investigated with classical phase diagram. In classical phase diagram, in addition to Neel order,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 140 13  شماره 

صفحات  -

تاریخ انتشار 2014